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Basic remarks

● Mathematics in this course is a requirement to understand and conduct 
interferometric imaging

● Interferometry is a nice field for the mathematically inclined, but 
required maths is manageable

● Mathematics is presented as tool, proofs partly not complete and used 
as an exercise to memorize the tool functions

● Principles presented here are fundamental to experimental physics, radio 
technology, informatics, image processing, theoretical physics etc.

● Unlike the last session, this one will not contain many pictures
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Important functions 

● Some functions that will return over and over again are presented
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Important functions: Gaussian 

a: amplitude

μ: mean

σ: standard deviation

Carl- Friedrich Gauß 
(1777- 1855)
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Important functions: Gaussian 

a: amplitude

μ: mean

σ: standard deviation

FWHM (full width at 
half maximum):
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Important functions: Gaussian 

a: amplitude

μ: mean

σ: standard deviation

Area below Gaussian:
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Important functions: Normalised Gaussian 

μ: mean

σ: standard deviation
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Important functions: Gaussian 2d 
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Important functions: Gaussian 2d 



NASSP 2016 10:56

Important functions: Boxcar function 
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Important functions: Rectangle function 
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Important functions: Sinc 
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Important functions: Dirac's Delta 

● Not a function but a distribution

● In many ways a function...

Paul Dirac
(1902- 1984)

It follows:
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Important functions: Dirac's Delta 

● More precisely, the Delta function is defined as the “limit” of a suitable 
series

Find set of functions with δ
α
 with

Then define  δ through the integral

In this sense:
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Important functions: Dirac's Delta 

● More precisely, the Delta function is defined as the “limit” of a suitable 
series

Find set of functions with δ
α
 with

Then define  δ through the integral

In this sense:
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Important functions: Dirac's Delta 

● More precisely, the Delta function is defined as the “limit” of a suitable 
series

● Two important relations:
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Important functions: Sha (Shah) or comb function

Relations:
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The Fourier transform

● Definition of the Fourier transform:

● Inverse Fourier transform
(via the Fourier inversion theorem):

Jean-Baptiste Joseph Fourier

 (1768 - 1830)
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The Fourier transform

● Definition of the Fourier transform:

● The Fourier tansform can be seen as 
decomposition of a function into a wave 
package

Leonard Euler
(1707 - 1783)
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The Fourier transform

● Notation: functions in the “Fourier space” are named by capital letters

● The inverse Fourier transform is the Fourier transform of the reverse 
function (an inverse Fourier transform is hence a triple forward Fourier 
transform)
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The Fourier transform of a Gaussian

● The Fourier transform of a Gaussian with dispersion σx is ...
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The Fourier transform of a Gaussian

● The Fourier transform of a Gaussian with dispersion σ
x
 is a Gaussian with 

dispersion σ
s
=(2πσ

x
)-1
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The Fourier transform of a Delta function

● The Fourier transform of a Delta function is ...
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The Fourier transform of a Delta function

● The Fourier transform of a Delta function is a sinusoid in the real and the 
imaginary part, a wave
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The Fourier transform of a comb function

● The Fourier transform of a sha function with period T is ...
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The Fourier transform of a comb function

● The Fourier transform of a sha function with period T is a sha function 
with period T-1
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The Fourier transform of a rectangle function

● The Fourier transform of a rectangle function is ...
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The Fourier transform of a rectangle function

● The Fourier transform of a rectangle function is the sinc function!
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The Fourier transform of a real-valued function

● The Fourier transform of a real-valued function is a Hermetian function 
and vice versa

Hermetian means:

Real-valued means:
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The n-dimensional Fourier transform

● The n-dimensional Fourier transformation and its inverse is defined as

 



NASSP 2016 31:56

The Convolution

● The convolution o is the mutual broadening of one function with the 
other

● Mathematical equivalent of an instrumental broadening or “filtering” 
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The Convolution

● The convolution o is the mutual broadening of one function with the 
other

● Mathematical equivalent of an instrumental broadening or “filtering” 
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The Convolution: rules
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The Convolution: examples
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The Convolution: examples
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The Convolution: examples
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Cross-correlation



NASSP 2016 38:56

Cross-correlation
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Auto-correlation
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Fourier transform properties: Linearity and separability
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Fourier transform properties: Shift theorem

Proof:
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Fourier transform properties: Shift theorem

Proof:
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Fourier transform properties: Convolution theorem
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Fourier transform properties: Convolution theorem

Proof:
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Fourier transform properties: Convolution theorem

Proof:
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Fourier transform properties: Crosscorrelation theorem

Proof:
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Fourier transform properties: Autocorrelation theorem

● Also: Wiener-Khinchin Theorem

● Just a special case of the cross-correlation theorem

Proof:
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The discrete Fourier transform: definition

● Discrete Fourier transform

● Inverse discrete Fourier transform

● Numerical methods exist to make the expensive FT faster (“Fast FT”)
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The discrete Fourier transform: Inverse
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The discrete Fourier transform and the Fourier transform

● Sample a function with the sampling function s in N regularly spaced 
steps over the interval
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The discrete Fourier transform and the Fourier transform

● Fourier-transform the sampled function

● Define the set

● With the discrete FT:

● We see that if we define 
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Nyquist's sampling theorem

● Consider a real-valued wave package with a frequency cutoff at 

● The Fourier transform has the support                   and it follows 

Harry Nyquist

(1889 – 1976)
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Nyquist's sampling theorem

● In an experiment we sample the function with the sampling period Δx
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Nyquist's sampling theorem

● In an experiment we sample the function with the sampling period Δx

● The Fourier transform repeats itself, it is aliased.

● If we sample a function with the bandwidth      , the sampling interval 
has to fulfil the condition 
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Limited sampling

● The thought experiment is not yet realistic. We can only measure for a 
limited number of samples

● It follows:

● The Fourier transform is hence always filtered with a sinc function, which 
gets narrower with increasing number of samples
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